
__
* This work was supported by the Office of Naval Research under contracts #N00014-93-1-0793, #N00014-98-1-0465 and
#N00014-00-1-0101

A Library of Optimization Algorithms for Organizational Design

Georgiy M. Levchuk
Yuri N. Levchuk

Jie Luo
Fang Tu

Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut

Storrs, CT 06269-2157
Tel./Fax: (860) 486-2890/5585

E-mail: Krishna@engr.uconn.edu

Abstract

This paper presents a library of algorithms to solve a broad range of optimization problems arising
in the normative design of organizations to execute a specific mission. The use of specific
optimization algorithms for different phases of the design process leads to an efficient matching
between the mission structure and that of an organization and its resources/constraints.
This library of algorithms forms the core of our design software environment for synthesizing
organizations that are congruent with their missions. It allows an analyst to obtain an acceptable
trade-off among multiple objectives and constraints, as well as between computational complexity
and solution efficiency (desired degree of sub-optimality).

1. Introduction

1.1 Motivation

The optimal organizational design problem is one of finding both the optimal organizational
structure (e.g., decision hierarchy, allocation of resources and functions to decision-makers
(DMs), communication structure, etc.) and strategy (allocation of tasks to DMs, sequence of task
execution, etc.) that allow the organization to achieve superior performance while conducting a
specific mission ([Levchuk et al., 1999a]). Over the years, research in organizational decision-
making has demonstrated that there exists a strong functional dependency between the specific
structure of a mission environment and the concomitant optimal organizational design.
Subsequently, it has been concluded that the optimality of an organizational design ultimately
depends on the actual mission parameters (and organizational constraints). This premise led to
the application of systems engineering techniques to the design of human teams. This approach
advocates the use of normative algorithms for optimizing human team performance (e.g., [Pete et
al., 1993, 1998], [Levchuk et al., 1996, 1997, 1999a,b]).

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
A Library of Optimization Algorithms for Organizational Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Office of Naval Research,One Liberty Center,875 North Randolph Street
Suite 1425,Arlington,VA,22203-1995

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
This paper presents a library of algorithms to solve a broad range of optimization problems arising in the
normative design of organizations to execute a specific mission. The use of specific optimization algorithms
for different phases of the design process leads to an efficient matching between the mission structure and
that of an organization and its resources/constraints. This library of algorithms forms the core of our
design software environment for synthesizing organizations that are congruent with their missions. It
allows an analyst to obtain an acceptable trade-off among multiple objectives and constraints, as well as
between computational complexity and solution efficiency (desired degree of sub-optimality).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.2 Related Research

When modeling a complex mission and designing the corresponding organization, the variety of
mission dimensions (e.g., functional, geographical, terrain), together with the required depth of
model granularity, determine the complexity of the design process. Our mission modeling and
organizational design methodology allow one to overcome the computational complexity by
synthesizing an organizational structure via an iterative solution of a sequence of smaller and well-
defined optimization problems ([Levchuk et al., 1997]). The above methodology was used to
specify an organizational design software environment, outlined in [Levchuk et al., 1999b], to
assist a user in representing complex missions and synthesizing the organizations. The component
structure of our software environment allows an analyst to mix and match different optimization
algorithms at different stages of the design process.
Our mission modeling and a three-phase iterative organizational design process, first proposed in
[Levchuk et al., 1997] and later enhanced in [Levchuk et al., 1998], is graphically represented in
Figure 1.

O
rg

an
iz

at
io

n

Task
Dependency

Graph

phase 1

Task-Resource
Allocation

phase 2

Organizational
Hierarchy

DM-Resource
Allocation

phase 3

Task-Resource
assignment

DM-Resource
assignment

DM-DM
Command
Hierarchy

M
is

si
o

n
M

o
d

el
in

g

Figure 1. The 3-phase Organizational Design Process

The 3-phase design process of Figure 1 solves three distinct optimization sub-problems:

Phase I. Scheduling Phase.
In this phase, an optimal task-resource allocation is established. It is defined in terms of a
platform-to-task assignment matrix. The objective function (mission completion time or a
combined objective function assembled from individual mission objectives such as the completion
time, accuracy, workload, expended resources, external coordination, etc.) is minimized subject to
assignment, resource availability, platform velocity and graph-related (such as precedence and
synchronization) constraints.

Phase II. Clustering Phase.
In this phase, an optimal DM-resource allocation is determined. It is referred to as DM-platform
assignment matrix. The objective function (weighted sum of the maximum internal and external
workloads or a combined objective function constructed from individual mission objectives such
as the number of decision-makers, their expertise, available platforms and their resident resources,
etc.) is minimized subject to assignment and DM workload constraints.

Phase III. Structural Optimization Phase.
In this phase, an optimal organizational hierarchy is found. It is represented in the form of a
directed tree with directed arcs specifying supported-supporting relations. The objective function
(maximal hierarchy workload induced by direct (one-to-one) and indirect coordination or a
combined objective function gleaned from the identified mission objectives such as the number of
communication links available for each DM, depth of organizational hierarchy, information flow,
etc.) is minimized subject to the graph-related (information access and hierarchy structure)
constraints.

On-line Adaptation Phase. In case of an asset or a decision node failure, the application of a
branch-and-bound method to the task-resource allocation-preference matrix generates the next
best assignments (the new task-resource allocation strategy). This method provides a quick and
efficient search for adaptation options. The dynamic scheduling accounts for on-line changes
without having to completely resolve the problem. If the newly obtained task-resource assignment
matrix violates the organizational constraints, Phases II and III of the algorithm are used to
generate the new organizational structure. In this case, Phase II is completed in an evolutionary
mode (platform clusters are obtained by regrouping the old platform groups, rather than
generating entirely new ones from scratch). Finally, if the process of generating a feasible
organizational structure fails, the mission must be aborted (see [Levchuk et al., 98] for details).

1.3 Scope and Organization of Paper

In section 2, we provide an overview of our mission modeling and organizational design
environment. In section 3, the optimization algorithms associated with the three optimization
stages are described. Section 4 concludes with a summary and plans for future research.

2. Multi-objective Optimization and Organizational Design Software Environment

Recently, we have begun the process of implementing our modeling and design methodology in
software to fully automate the organizational design process, while allowing for iterative user-
defined modifications at various stages of the design process. To assist an analyst, our software
environment is designed to display the metrics of organizational performance, characterize the
attainment of mission objectives, and specify the workload distribution across the organizational
elements of interest.

Our modeling and design environment ([Shlapak et al., 2000]) includes the following seven key
components (Fig.2):

(1) Asset/Resource Description;
(2) DM Structure Profiler;
(3) Mission Modeling;
(4) Performance Criteria/Measures;
(5) Schedule Generation;
(6) Resource Allocation; and
(7) Hierarchy Construction.

Translation of
Different Data

Structures

Translation of
Different Data

Structures

Internal Software Interface

Software Environment

Resource
Capability
Definition

Resource
Capability
Definition

Asset
Description

Asset
Description

Database Definition

DM
Profiler

DM
Profiler

Mission
Decomposition

Mission
Decomposition

Task
Dependency

Graph

Task
Dependency

Graph

Mission Modeling

Task
Parameters

Task
Parameters

Task-Asset
Allocation

Task-Asset
Allocation DM-Asset

Allocation

DM-Asset
Allocation

Organizational
Hierarchy

Organizational
Hierarchy

Phase 1

Optimization Components

Performance
Criteria / Measure

Performance
Criteria / Measure

Phase 2 Phase 3

Gantt Chart
(Task-Asset
Assignment)

Gantt Chart
(Task-Asset
Assignment)

DM-Asset
Assignment

DM-Asset
Assignment

DM-DM
Command
Hierarchy

DM-DM
Command
Hierarchy

Optimization Results

Other
Organizational

Design Algorithms

Other
Organizational

Design Algorithms

Algorithm Testing

Enhanced
DDD-III
Simulator

Enhanced
DDD-III
Simulator

Dynamic Simulation

1

2

3

4

5 6 7

Figure 2. Component Architecture of Our Software Environment

2.1 Modeling Components

The first three components of our design environment (Asset/Resource Description, DM
Structure Profiler, and Mission Modeling) are devised to assist an analyst in developing mission
models (of various complexity) and organizational constraints. These serve as inputs to our
design process. The Performance Criteria/Measures component is used to stipulate objective
functions for the design process and to define a cost function that combines mission objectives
and design parameters.

2.2 Design Optimization Components and Algorithms

After the Performance Criteria/Measures component is used to define objective functions for the
design process, the last three components of our software environment (Schedule Generation,
Resource Allocation, and Hierarchy Construction) allow an analyst to perform a step-by-step
design of the organizational structure, while implementing, if desired, the user-defined design
modifications at various stages of the design process to adjust the metrics of organizational
performance (e.g., weights on objective function, workload distribution, etc.). These design
optimization components present a step-by-step visualization of our organizational design
process. Specifically, the Schedule Generation component produces the task-resource allocation
schedule that corresponds to Phase I of our organizational design algorithm. The Resource
Allocation component (Phase II) defines DM functionality by grouping platforms and provides a
balance between internal and external coordination. Finally, the Hierarchy Construction
component (Phase III) derives organizational hierarchy to minimize the workload due to indirect
external coordination induced by the hierarchy structure.

In general, the three sub-problems of Schedule Generation, Resource Allocation, and Hierarchy
Construction are NP hard (optimal algorithms take exponential time). Thus, efficient (near-
optimal) heuristics need to be explored to effectively solve large-scale organizational design
problems. The modular structure of our software environment allows one to apply different
algorithms (both optimal and heuristic) at different stages of the design process to handle the
complexity of a specific problem at hand. The iterative application of the corresponding
algorithms allows us to simultaneously optimize multiple performance criteria, subject to an
acceptable trade-off among design objectives.

The organizational structure, an outcome of the design process, prescribes the relationships
among the organizational entities by specifying:

• Task-resource schedule;
• DM-resource access/allocation;
• DM organizational hierarchy;
• Inter-DM coordination structure.

The organizational structure defines each individual DM’s capabilities (by assigning each DM a
share of the information and resources) and specifies the rules that regulate inter-DM
coordination. The organizational structure, together with a set of thresholds constraining a DM
workload, determines the boundaries of the space of feasible organizational strategies (i.e., all
feasible DM-task-resource assignments and coordination strategies), from which the organization
can choose a particular strategy for implementation. The feasible strategy space delimits the
strategy adaptations that an organization can undertake without having to undertake major
structural reconfigurations.

3. Library of Optimization Algorithms

In this section, we present the library of optimization algorithms used in our organizational design
software environment. The library is constantly evolving and new algorithms and performance
measures are being added to enlarge the scope of applicability of our software environment.

3.1 Scheduling

3.1.1 Problem Definition

Scheduling concerns the allocation of limited resources to tasks over time. The resources and
tasks may take many forms. The resources may be platforms, human teams, surveillance assets,
information sources, etc. The tasks may be landings or take-offs, evaluations or executions,
operational or informational. They can be aggregated or independent, defensive or offensive. Each
task may have a different priority level and opportunity window.

Scheduling is a decision-making process that has as its goal to optimize one or more objectives.
The objectives may take many forms. One possible objective is the minimization of mission
completion time, and another is task deadline violation.

The scheduling phase of the organizational design process can be generally described as follows.
A set of tasks with specified processing times, resource requirements, locations and precedence
relations among them need to be executed by a given set of platforms with specified resource
capabilities, ranges of operation and velocities. Resource requirements and resource capabilities
are represented via vectors of the same length with each entry corresponding to a particular
resource type. Tasks are assigned to groups of platforms in such a way that, for each such
assignment, the vector of task’s resource requirements is component-wise less than or equal to
the aggregated resource capability of the group of platforms assigned to it. The task can begin to
be processed only when all its predecessors are completed and all platforms from the group
assigned to it arrive at its location. A resource can process only one task at a time. Platforms are
to be routed among the tasks so that the overall completion time (called Mission Completion
Time – the completion time of the last task) is minimized.

3.1.2 Example

A joint group of Navy and Marine Forces is assigned to complete a military mission that includes
capturing a seaport and airport to allow for the introduction of follow-on forces. There are two
suitable landing beaches designated "North" and "South", with a road leading from the North
Beach to the seaport, and another road leading from the South Beach to the airport. From
intelligence sources, the approximate concentration of the hostile forces is known, and counter-
strikes are anticipated. The commander devises a plan for the mission that includes the completion
of tasks shown in Figure 3. The following 8 resource requirements/capabilities are modeled:
AAW (Anti-Air Warfare), ASUW (Anti-Submarine Warfare), ASW (Anti-Sea Warfare), GASLT
(Ground Assault), FIRE (Firing Squad), ARM (Armory), MINE (Mine Clearing), DES

(Destroyer). In Figure 4, mission tasks, the assets (platforms) available for operation, resource
requirement vector for each task, resource capability vector for each platform and other relevant
parameters are presented.

= aggregated defend task, showing possible subtasks

= aggregated encounters task, with possible subtasks

= mission tasks (that must be done); known in advance

START

Encounters

• SMine
• Sea(Pb)*

TAKE
HILL

TAKE
N. BCH

TAKE
S. BCH

Encounters
on S/P road

Clear:
• GMINE
• TANK

Encounters
on A/P road

Defend N. BCH

• ARTY
• FROG
• Helos

CLEAR
SAMs*

CLEAR
SAMs*

TAKE
PORT

TAKE
A/P

CVBG

• Silk*
• Air(S)*
• Sea(Pb)*
• Sea(Sub)

Resupply
PORT No.

• Sea(Pb)*

ARG

Resupply
PORT So.

Defend S. BCH

Encounters

• GTL*
BLOW

BRIDGE

END

• ARTY
• FROG
• Helos

• Sea(Pb)*

• Silk*
• Air(S)*
• Sea(Pb)*
• Sea(Sub)

* indicates that these must be distinguished from neutral (or decoy) counterparts

Clear:
• GMINE
• TANK

Figure 3. Task-precedence graph for Example 1.

Tasks Resource Requirement VectorLocations Processing Time

1 5 3 10 0 0 8 0 6 3070 15

2 5 3 10 0 0 8 0 6 3064 75

3 0 3 0 0 0 0 0 0 1015 40

4 0 3 0 0 0 0 0 0 1030 95

5 0 3 0 0 0 0 10 0 1028 73

6 0 0 0 10 14 12 0 0 1024 60

7 0 0 0 10 14 12 0 0 1028 73

8 0 0 0 10 14 12 0 0 1028 83

9 5 0 0 0 0 5 0 0 1028 73

10 5 0 0 0 0 5 0 0 1028 83

11 0 0 0 0 0 10 5 0 1025 45

12 0 0 0 0 0 10 5 0 105 95

13 0 0 0 0 0 8 0 6 2025 45

14 0 0 0 0 0 8 0 6 205 95

15 0 0 0 20 10 4 0 0 1525 45

16 0 0 0 20 10 4 0 0 155 95

17 0 0 0 0 0 8 0 4 105 60

18 0 0 0 8 6 0 4 10 205 60

CVBG

ARG

Resupply Port N

Resupply Port S

Encounters N&S

HILL

NORTH BEACH

SOUTH BEACH

Defend N. Beach

Defend S. Beach

S/P Road

A/P Road

SAM SeaPort

SAM AirPort

SEAPORT

AIRPORT

GTL

Blow Bridge

Platforms Resource Capability Vector Velocity

1 10 10 1 0 9 5 0 0 2

2 1 4 10 0 4 3 0 0 2

3 10 10 1 0 9 2 0 0 2

4 0 0 0 2 0 0 5 0 4

5 1 0 0 10 2 2 1 0 1.35

6 5 0 0 0 0 0 0 0 4

7 3 4 0 0 6 10 1 0 4

8 1 3 0 0 10 8 1 0 4

9 1 3 0 0 10 8 1 0 4

10 1 3 0 0 10 8 1 0 4

11 6 1 0 0 1 1 0 0 4.5

12 6 1 0 0 1 1 0 0 4.5

13 6 1 0 0 1 1 0 0 4.5

14 0 0 0 0 0 0 10 0 2

15 0 0 0 0 0 0 0 6 5

16 0 0 0 0 0 0 0 6 7

17 0 0 0 6 6 0 1 10 2.5

18 1 0 0 10 2 2 1 0 1.35

DDG

FFG

CG

ENG

INFA

SD

AH1

CAS1

CAS2

CAS3

VF1

VF2

VF3

SMC

TARP

SAT

SOF

INF (AAAV – 1)

19 1 0 0 10 2 2 1 0 1.35INF (AAAV – 2)

20 1 0 0 10 2 2 1 0 1.35INF (MV22 – 1)

Figure 4. Task Requirement and Platform Capability Data for Example 1

3.1.3 Related Research

The scheduling problem arising in organizational design extends to a large set of well-known
problems. When there exists only one platform, it is related to the Traveling Salesman Problem
(TSP) and its extensions (such as Time-dependent TSP, TSP with precedence relations, etc. – for
review, see [Lawler et al., 1985], for latest results, see [Mingozzi et al., 1997], [Zweig et al.,
1995], [Fischetti et al., 1997], [Franca, 1995]). When any platform can process any task, the
problem simplifies to Multiple TSP with precedence relations. If, in addition, the processing of a
task can be separated in time among different platforms, our problem is related to the Vehicle
Routing problem and its extensions (for review, see [Malandraki et al.,1992], [Golden et al.,
1988], for latest results, see [Fisher et al., 1994], [Dumas et al., 1995], [Taillard et al., 1997]).

Another related useful problem is the Dial-a-Ride problem (see [Madsen et al., 1995]). In the case
when travel times among task locations are much smaller than the task processing times (and
therefore can be ignored), the problem reduces to a Multiprocessor Scheduling problem with
Precedence Constraints (for review, see [El-Rewini, 1994], [Cheng et al., 1990], for recent
studies see [Chan, 1998], [Van De Velde, 1993], [Baruah, 1998]). For a review of general
scheduling problems, see [Pinedo, 1995], [El-Rewini, 1994].

Other variations of problem formulation are possible. For example, there may exist a delay
between processing of two tasks on the same platform (“adjustment” delay). The opposite of this
situation is when the delay occurs only when tasks are processed on different platforms
(communication delays) with no delay for processing by the same platform. This has relevance in
Multiprocessor Scheduling with inter-processor communication delays (see [Baruah, 1998],
[Selvakumar, 1994]). Another variation is the existence of time windows for processing each task
(that is, the earliest start times, called release times, and the latest end-times, called deadlines,
define opportunity windows for tasks). In this case, the objective function involves the
minimization of earliness-tardiness penalties (that is, the penalties resulting from processing tasks
outside of their time-windows). In our problem, we assume that task-processing times are fixed.
In real life, situations may arise when task-processing times depend on the amount of resources
allocated to them. The objective then is to achieve a tradeoff between processing tasks as fast as
possible and using as little resources as possible [Turek et al., 1992]. Another complication is that
a task can begin to be processed when the assigned platforms are within a specified distance of
this task (depending on the task and the range of the platform). In this case, the problem assumes
the form of the shortest covering path problem (see [Current, 1994]). Other realistic constraints,
such as the ability of tasks to move during the mission and platforms having expendable resources
(such as fuel, firepower, supplies, etc.), can be included.

All of these instances of our scheduling problem are proven to be NP-hard, meaning that no
known polynomial algorithms exist for finding their optimal solutions. Therefore, research in this
area has primarily focused on the development of near-optimal algorithms and local search
techniques.

3.1.4 Mathematical Formulation of the Scheduling Problem

The scheduling problem associated with the phase I of our 3-phase organizational design process
is defined by the following parameters:

N = number of tasks to be processed.
K = number of available platforms.
S = number of resource requirement/capability types.
ti = processing time of task i.
vm = velocity of platform m.

=
otherwise 1,

startcan task before completed bemust taskif ,0 j i
pij

rml = resource capability of type l on platform m.
Ril = resource requirement of type l for task i.
T = mission completion time found using a heuristic algorithm (or set to infinity).
0 = task that serves as “start-finish” (or “depot”) task.

The following variables are used to define the scheduling problem:

Assignment variables:

=
otherwise 0,

 task toassigned is platform if ,1 i m
wim

Traversing variables:

=

otherwise 0,

 task processingafter task process to

assigned is platform if ,1

i j

 m

xijm

si = start time of task i.
Y = mission completion time (time when the last task is completed).

The problem constraints can be formulated as follows. Task i can be assigned to a platform m
only if platform m travels to i directly from some other task j (including the depot task 0) and
travels from this task i to some other task. The traveling of platform m is described by variables
xijm. A platform can arrive at a task location (leave a task location) only once. Note that variables
xiim = 0 for i=1,..,N (except for x00m which can be 1 if the platform is idle during the entire mission).
Therefore, the following constraints on the problem variables (called assignment constraints) are
introduced:

KmNiwxx im

N

j
jim

N

j
ijm ,..,1;,...,0 ,

00

==== ∑∑
==

If task i must precede task j (that is, pij=0), then task j can begin to be processed only after task i
is completed, that is

jii sts ≤+

This is true for all predecessors of task j. Also, if any platform m travels directly from task i to
task j (that is, xijm=1), then task j can begin to be processed only after task i is completed plus the
span of time needed for platform m to travel from i to j (this travel time is equal to dij/vm), that is

j
m

ij

ii s
v

d
ts ≤++

Combining these together and noting that T>si+ti for any i, we obtain the following constraints
(called precedence constraints):

iijij
m

ij

ijmji tTpTp
v

d
xss −⋅≤

⋅+⋅+−

These constraints also eliminate cycling. When pij=1 and xijm=0, the precedence constraints are
redundant.

Since the aggregated resource capability vector of a platform group assigned to a task should be
greater than or equal to the task resource requirement vector, we obtain the following constraints
(called resource requirement constraints):

;,..,1;,..,1,
1

SlNiRwr il

K

m
imml ==≥⋅∑

=

These constraints also ensure that at least one platform is assigned to any task. The mission
completion time is equal to the maximum among the completion times of all tasks. It is also not
greater than the solution obtained by a heuristic algorithm. Therefore, the following constraints
are introduced (called mission completion time constraints):

;,..,1, NiTYst ii =≤≤+

The objective is to minimize the mission completion time. Then, the problem is formulated as
follows:

{ }

∈≥≤≤

=−≤−

==≥⋅

==−⋅≤

⋅+⋅+−

===−

===−

∑

∑

∑

=

=

=

1,0,;0;0

;,..,1,

;,..,1;,..,1,

;,..,1;,..,1,;

;,..,1;,...,0,0

;,..,1;,...,0,0

 min

1

0

0

imijmi

ii

ml

K

m
imml

iijij
m

ij

ijmji

im

N

j
jim

im

N

j
ijm

wxsTY

NitYs

SlNiRwr

KmNjitTaTa
v

d
xss

KmNiwx

KmNiwx

Y

This is a mixed-binary (i.e., containing continuous and binary variables) linear programming
(MLP) problem (which is NP-hard). Moreover, even relaxing the constraints on the binary
variables wim, xijm (that is, making them real numbers in the [0,1] range) produces a linear
programming problem (LP) with the number of variables equal to 1)1(2 +++ NNK , the number
of equality constraints equal to)1(2 +NK and the number of inequality constraints equal to

)1()1(++− NSNKN . This creates “curse of dimensionality” and makes it hard to find solutions
to even average-sized and relaxed scheduling problems.

3.1.5 Optimal Solution via Dynamic Programming

The optimal algorithms are based on the mixed-binary linear programming formulation described
in the previous section. For more information on solving integer (binary) linear programming
problems, see [Wosley, 1998], [Fang et al., 1993], [Nemhauser, 1988], [Bertsekas, 1997]. The
primary computational methods for solving mixed-integer programming problems optimally
include the branch-and-bound algorithm, dynamic programming, column generation, and
decomposition algorithms. The dynamic programming formulation for this problem is equivalent
to the branch-and-bound algorithm with the following bounding rule: the nth level of the branch-
and-bound tree corresponds to the assignment of n tasks.

Define a state),..,,,..,,(11 KK ffLTLTM , where },..,1{ NM ⊂ , jLT is the task last processed by

platform j, MLT j ∪∈ }0{ , and jf is its completion time. We associate with our problem a state

space Φ of states),..,,,..,,(11 KK ffLTLTM , where each state represents a feasible schedule of

tasks from set M on platforms 1,…,K such that the last task to be processed on platform j is jLT ,

and it is completed at time jf . The state space Φ can be decomposed as: Φ=Φ1∪…∪ΦN, where

{ }mMffLTLTM KKm =Φ∈=Φ ||,),..,,,..,,(11 .

Then the solution to the scheduling problem is obtained as

()
{ }K

ffLTLTM
ffY

NKK

,..,maxmin 1,..,,,..,, 11 Φ∈
=

The states can be propagated from mΦ to 1+Φm in the following manner: for each state

mKK ffLTLTM Φ∈),..,,,..,,(11 , we can create a new state 111)',..,',',..,','(+Φ∈ mKK ffLTLTM

by assigning a task (such that it can be currently assigned – that is, all its predecessors are in M) to
any of the group of platforms it can be assigned to. The information about the groups of platforms
that can process each task can be either pre-computed off-line, or given as a problem parameter
by the analyst. If task j is assigned to platforms qii ,..,1 , then the new state

)',..,',',..,','(11 KK ffLTLTM has the following structure:

{ }

()

++

∉

=

∈

∉
=

∪=

∈∈
otherwise ,max,maxmax

],..,[if ,

'

],..,[if ,

],..,[if ,
'

'

],..,[

1

1

1

1 z

jLT

i
iiz

j
jINz

j

qi

i

q

qi

i

v

d
fft

iiif

f

iiij

iiiLT
LT

jMM

i

q

The state space can be reduced by using the following two dominance and bounding tests.

Test 1: Dominance.
A state),..,,,..,,(11 KK ffLTLTM is said to dominate state)',..,',',..,','(11 KK ffLTLTM if

jj ff '≤ for each j=1,..,K. Clearly, the state)',..,',',..,','(11 KK ffLTLTM can be discarded if

such a state),..,,,..,,(11 KK ffLTLTM exists.

Test 2. Bounding.
Let)},..,,,..,,{(11 KK ffLTLTMlb denote a lower bound on the solution of the scheduling

problem given that the assignments from state),..,,,..,,(11 KK ffLTLTM are fixed. It can also be
considered as the solution to the scheduling problem with tasks }:{ Mjj ∉ and each platform m

becoming available at time mf . If this lower bound is greater than T (which is an upper bound on

the optimal completion time), then this state can be discarded.

Example (continued).

In Figure 5, the state 911),..,,,..,,(Φ∈KK ffLTLTM and its possible propagation is shown.

LTPlatform f

3 90.12

4 00

5 37.38

6 409

7 37.38

8 409

9 207

10 103

11 104

12 104

13 104

14 305

15 141

16 90.12

1 301

2 90.12

17 37.38

18 106

19 207

20 207

M = 1 2 3 4 5 6 7 8 9

m=9

Tasks that can be
assigned:

Remaining tasks:
10 11 12 13 14 15

16 17 18 19 20

10 11 12 13 17

Task considered:
17

of possible platform
groups for T17 = 129
2-platform groups:

7 15 7 16 7 17 8 15 8 16 8 17

9 15 9 16 9 17 1015 1016 1017

Group considered:
1017

assign
T17 to

P10,P17

LTPlatform f

3 90.12

4 00

5 37.38

6 409

7 37.38

8 409

9 207

10 45.417

11 104

12 104

13 104

14 305

15 141

16 90.12

1 301

2 90.12

17 45.417

18 106

19 207

20 207

M =
m=10

1 2 3 4 5 6 7 8 9 17

Figure 5. State Propagation for Scheduling Problem

Choose a state from Φm NO m←m+1

State Reduction

New State Selection
Choose a task that can be processed

OK

Choose a feasible group of platformsNO

OK

NO

OK

BoundingNO

DominanceNO

OK

Add this state to Φm+1

OK

m<M
OK

NO
End

Figure 6. Dynamic Programming Algorithm

Different bounds can be used in Test 2. It was found that LP relaxation solution provides a close
bound to the optimal (although the variables at which it is attained are not binary). In addition,
relaxation techniques such as Lagrangian relaxation (described in [Levchuk et al., 2000]) are
used. Graphically, the dynamic programming algorithm is illustrated in Figure 6. This version of
dynamic programming is equivalent to a breadth-first search in a branch-and-bound tree. It should
be noted that dense precedence structures as well as tight lower and upper bounds substantially
reduce the search space.

3.1.6 Sub-optimal Algorithms

3.1.6.1 Dynamic List Scheduling Method

The dynamic list scheduling (DLS) heuristic has two main Parts:

Part 1: Choose the task to be processed.
Part 2: Select the group of platforms to be assigned to it for processing.

The following notation (together with notations from section 3.1.1) are used throughout this
section.

READY = set of tasks that can be processed at the current time
FREE = set of platforms available for processing tasks at the current time.
OUT(i) = set of direct successors of task i.
IN(i) = set of direct predecessors of task i.
nIn(i) = number of direct predecessors of task i.
nOut(i) = number of direct successors of task i.
CP(i) = critical path of task i (equal to the minimum required time from task i to the end of the mission).
level(i) = level of task i in the task precedence graph.
WL(i) = weighted length of task i.
B(m,i) = amount of resources from platform m used to process task i.

() ()∑
∈

=
READYi

imBmBR ,

l(m) = last task processed on platform m (0 if it has not processed any)
G(i) = group of platforms selected for processing task i.
FT=[f1,..,fM] – finish times of tasks that are currently being processed (assigned but not yet completed).

 Note that more than one task can have identical completion times.
P(i) = priority coefficient assigned to task i in Part 1 of the algorithm.

The following three procedures were used for Part 1.

Critical Path Algorithm (CP). Critical paths CP(i) are calculated for each task given the task
precedence graph and the task processing times. In the list scheduling algorithm, a task from
READY is selected with the largest CP(i). When ties occur, task with the largest number of direct
successors is chosen (or ties are broken arbitrarily). Priority values are set as)()(iCPiP = .

Level Assignment Algorithm (LA). Levels are defined for each task based on the task precedence
graph in a sequential manner. All predecessors of a task can be located only on lower levels (no
task can have a direct successor in the same or lower level). The LA algorithm assigns tasks level
by level. In the scheduling algorithm, a task from READY is chosen with the smallest level. When
ties occur, task with the largest CP(i) is selected. Priority values are set as

{ })()(max)(iljliP
j

−= .

Weighted Length Algorithm (WL). As described in [Shirazi et al., 1990], the following coefficient
is used to select the tasks:

() ()
()

()
()

()

()
()jCP

jCP

jCPiCPiWL

iOUTj

iOUTj

iOUTj
∈

∈

∈

∑
++=

max
max

While scheduling, task with the largest WL(i) is selected. If ties occur, task with the largest CP(i)
is chosen (or ties are broken arbitrarily). Priority values are set as)()(iWLiP = .

In Part 1 of the DLS algorithm, an assignment is considered whenever a task (or a group of tasks)
is completed. At that time all the platforms processing the completed task become free (enter
FREE set). All the tasks for which this task was the last processed predecessor become ready
(enter READY set). Then, if there exists a task in READY set such that the aggregated capability
vector of FREE set is component-wise more than or equal to this task requirement vector, an
assignment can be made. Otherwise, the next completion time is considered.

In Part 2 of the DLS algorithm, we select a group of platforms to allocate to a task selected for
processing in Part 1. The idea is to select platforms such that the amount of resources that are
consumed by the task selected in Part 1 should affect the processing of other tasks in the READY
set as little as possible. In addition, we want to choose the “closest” platforms in that the selected
group of platforms can arrive at this task’s location the fastest so as to minimize the completion
time of the selected task. Each platform is assigned a coefficient and assignments are made in
ascending order of these coefficients. The following coefficients were used (if task i is selected for
processing in Part 1):

() ()
() ()imBmBR

imB
mV

,

,
1 −

=

() () ()
() ()

() ()imBmBR

imB

v

d
tsmV

m

iml
mlml ,

,,
2 −

++=

() () ()
() ()

() ()imBmBR

imB

v

d
tsmV

m

iml
mlml ,

,,
3 −

+++=

Here, sj is the starting time of task j (with s0=0 and t0=0). After an initial group of platforms is
found, it is then pruned by eliminating platforms from this group in descending order of these
coefficients. The final group (which is irreducible) is allocated to task i and is denoted as G(i).

When the platforms are assigned, the starting time for selected task i is computed as

() () ()
()

++=
∈

m

iml
mlml

iGm
i v

d
tsfs ,max,max .

Parts 1 and 2 can be formalized as the following DLS algorithm:

DLS Algorithm.

Initialization. READY={ i : nIn(i)=0 }, FREE={1,..,K}, M=0.

STEP 1. Completion time Update. (skipped during initialization stage).

Pick ()t
FTf

ff
t∈

= min

FT←FT\{f}
Let FG be the corresponding group of tasks.
FREE←FREE∪ G(FG)
for each i∈FG

for each j∈OUT(i)
nIn(j) ← nIn(j)-1;
if nIn(j)=0
 READY←READY∪ {j}
end if

end for
end for

STEP 2. Assignment Possibility Check.

if ∀ i∈READY il
FREEm

ml Rrs ≤∃ ∑
∈

:

GO TO Step 1.
else GO TO Step 3
end if

STEP 3. Task Selection.
if READY=∅

GO TO Step 1.
end if
Find the set

=≥∈= ∑
∈

SlRrREADYiREADY il
FREEm

ml ,..,1,1

Select (){ }jPi
READYj 1

minarg
∈

=

READY←READY\{i}

STEP 4. Platform Group Selection.
Find the set

()

≠∈= ∑
=

0,min1
1

S

l
ilml RrFREEmFREE

TG=∅

do until SlRr il
TGm

ml ,..,1, =∀≥∑
∈

(){ }mVn
FREEm

2
1

maxarg
∈

=

FREE1←FREE1\{m}
TG←TG∪{n}

end do

STEP 5. Platform Group Pruning.
(){ }mVn

TGm
2minarg

∈
=

TG1=TG
while TG1≠∅

(){ }mVn
TGm

2
1

minarg
∈

=

TG1←TG1\{n}

if SlRr il
nTGm
ml ,..,1,
}\{

=∀≥∑
∈

TG←TG\{n}
end if

end while

STEP 6. Group Assignment.
G(i)=TG

() () ()
()

++=
∈

m

iml
mlml

iGm
i v

d
tsfs ,max,max

ii tsf +=
if f∉FT

FT←FT∪{f}
end if
GO TO Step 3.

Graphically, the process is illustrated in Figure 7.

Completion Time Update
Step 1.

Assignment Possibility Check
Step 2.

Task Selection
Step 3.

Platform Group Selection
Step 4.

Platform Group Pruning
Step 5.

yes

yes

NO

NO

Update Completion Times

Initialization

yes

NO
End

Figure 7. Dynamic List Scheduling Algorithm

Example (continued).

Consider the steps of DLS algorithm with the scheduling results shown as a Gantt chart in Fig. 8.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

T1

T1

T1

T2

T2

T2

T2

T3

T4

T5

T5

T5

T5

T6

T6

T6

T6

T6

T7

T7

T7

T7

T9

T17

T17

T18

T18

Gantt-Chart for platform scheduling-allocation.

time

P
la

tf
or

m
s.

Figure 8. DLS step (task selection)

Note that a particular assignment for tasks 1 and 2 follows from the need to use platform 2 in
processing both of them. The finish time of 30.0752 time units is considered (this is a finish time
of task 7). Platforms 5,10,11, and 12 are freed and the available platform set becomes
FREE={1,4,5,7,9,10,11,12,13,14,15,17,1,19,20}. The set of processed tasks becomes
{1,3,4,5,6,7,17, 18} and the set of assigned tasks becomes {1,2,3,4,5, 6,7,9,17,18}. Task 7 is the
last processed predecessor of tasks 8 and 11, so READY={8,11}. Both these tasks can be
scheduled at this time by assigning them to platform groups {9,11,13,18} and {7,14} respectively.
Moreover, task 8 is assigned first (because CP(8)=55 and CP(11)=25). The groups are chosen
according to the coefficients V2(⋅) for platforms defined at this step. For task 8, the corresponding
platforms that can be assigned to it and their coefficients are shown in Figure 9.

The new schedule is shown in Figure 10 and the next completion time to be considered is 40 time
units corresponding to the completion time of task 9. By completing task 9, task 13 becomes
available for processing. Note that, although the current mission processing time is 90.1, we are
“working inside” the mission.

The final scheduling results obtained by DLS are shown in Figure 11.

4 0.2

5 0.3

7 0.2

9 0.1

10 0.5

11 0.1

12 0.1

13 0

1 1.7

17 0.4

18 0.2

19 0.2

20 0.2

Platforms V2(⋅) (106 •)

Figure 9. Platforms that can be used in processing task 8 and their preference coefficients.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

T1

T1

T1

T2

T2

T2

T2

T3

T4

T5

T5

T5

T5

T6

T6

T6

T6

T6

T7

T7

T7

T7

T8

T8

T8

T8

T9

T11

T11

T17

T17

T18

T18

Gantt-Chart for platform scheduling-allocation.

time

P
la

tf
or

m
s.

Figure 10. DLS step – current assignment completed.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

T1

T1

T1

T2

T2

T2

T2

T3

T4

T5

T5

T5

T5

T6

T6

T6

T6

T6

T7

T7

T7

T7

T8

T8

T8

T8

T9 T10

T11

T11

T12

T12

T13

T13

T14

T14

T15

T15

T15

T16

T16

T16

T17

T17

T18

T18

Gantt-Chart for platform scheduling-allocation.

time

P
la

tf
or

m
s.

Figure 11. The Output of Scheduling Phase

3.1.6.2 Pair-wise Exchange Improvement

The DLS algorithm of subsection 3.1.5.1 produces sub-optimal solutions. It is expected that the
sequence with which the tasks are assigned according to DLS is near-optimal. Suppose that the
sequence of scheduling obtained from DLS is Nii ,..,1 . Then, the following algorithm is used to

improve the scheduling results.

for n=1:N-1
do

Select j∈{n+1,..,N} such that the scheduling sequence Njnjnjn iiiiiiii ,...,,,,...,,,,..., 11111 +−+− is

feasible and the schedule obtained using platform allocation from DLS algorithm is the shortest one.

Then NjnjnjnN iiiiiiiiii ,...,,,,...,,,,...,,..., 111111 +−+−← (permute tasks in and ij in the scheduling

sequence).
end for

An exchange of tasks in and ij is feasible (n<j) if

a) },...,{)(11 −⊂ nj iiiIN

b) },...,{)(1 Njn iiiOUT +⊂

Typically, the pair-wise exchange heuristic produces 10 to 20% improvement in the completion
time. However, in cases when DLS is already optimal or close to optimal, no improvement is
obtained. In example 1, pair-wise exchange does not result in improvement. We can conclude that
the output of DLS algorithm for example 1 is close to optimal.

Analyzing the scheduling results and resource requirement/capability data for example 1 proves
that the schedule in Fig. 11 is optimal. It follows from the fact that tasks 1 and 2 have to be
processed on platform 2. Therefore, the fastest way to process these tasks is such that their finish
times are 30 and 90.14 time units (since platform 2 must travel from one of them to another).
When finish time of task 2 is 90.14, the earliest finish time for task 16 is 135.14 time units (which
is equal to the mission completion time in Fig. 11). When finish time of task 1 is 90.14, then the
earliest finish time for task 15 is equal to the mission completion time of Fig. 11, making it
impossible to create a shorter schedule.

3.2 Resource Allocation to DM Nodes (Clustering)

A cluster is comprised of a number of similar objects grouped together. In phase II of our
organizational design process, the assignment results obtained in phase I are used to allocate
platforms to decision-makers (DMs). A platform-task assignment gives us information about
required coordination among platforms. This coordination among platforms stems from the need
to process the same task; it is carried out through DMs assigned to these platforms as
information/decision carriers. The coordination that occurs is one of information, decision, and
action. Any two DMs are said to coordinate in processing a task if they are “owners” of platforms
that are required simultaneously to process this task. Note that coordination of this sort can be
avoided by assigning all the platforms (from a platform group assigned to process the task) to a
single DM. In this case, many platforms may be assigned to a single DM. It results in increased
coordination between the DM and the platforms processing a task. This is termed internal
coordination of a DM. Conversely, the coordination among DMs is termed external
coordination. This external coordination stems from two sources: direct one-to-one coordination
among DMs and indirect coordination due to information flow through the DM hierarchy. In
Phase II, only the workload due to direct one-to-one coordination among DMs is considered.
Mathematical definitions of internal and external coordination are presented in subsection 3.2.1.
For a review of clustering algorithms, see [Jain and Dubes, 1988].

Given the data from phase I, platforms are clustered into groups to be assigned to DMs. The
objective is to minimize the DM coordination workload associated with DM-platform-task
assignment. The workload is defined as a weighted sum of the internal and direct one-to-one
external coordination, as well as the task workload.

3.2.1 Problem Formulation

The following definitions are used to quantify the problem.

DM internal workload is defined as the number of platforms assigned to a DM.
DM-to-DM direct external coordination is equal to the number of identical tasks assigned to two DMs.

DM direct external workload is equal to the sum of DM’s direct external one-to-one coordination with
other DMs.

The following parameters are used to formulate the problem.

D = number of available DMs
BI = bound on internal coordination workload allowed
BE = bound on external coordination workload allowed
BT = bound on number of tasks that can be assigned to a DM
WI = weight on the internal workload
WE = weight on the external workload
The platform-task assignment obtained in phase I is a matrix [wim] and is used as a parameter.

The following variables are used:

=

=

=

otherwise 0,

 task process toassigned is DM if ,1

otherwise 0,

over task coordinate and DMs if ,1

otherwise 0,

 platform assigned is DM if ,1

in
dt

imn
ddt

mn
dp

ni

nmi

nm

CW = maximal weighted coordination workload

A DM n is assigned to a task i if and only if it is assigned to some platform which was assigned to
process this task (this information was obtained in phase I). Therefore, the following constraints
are introduced (called DM assignment constraints):

Kmdpwdt nmimni ,..,1 =∀⋅≥

Inequality in this formulation would become tight for some platform m. That is, we would have

nmim
Km

ni dpwdt ⋅=
= ,..,1

max after optimization (which is exactly the definition of variable dtni).

Two DMs n and m coordinate through task i if and only if they are assigned this task. It means
that ()mininmi dtdtddt ,min= . Therefore, the following constraints are introduced (called DM

external coordination constraints):

1−+≥ mininmi dtdtddt

The right-hand side is equal to 1 if and only if 1== mini dtdt . Whenever this is not true, DMs n

and m are not coordinating over task i and the variable 0=nmiddt (and the right-hand side is <0).

The number of tasks assigned to a DM n is equal to ∑
=

N

i
nidt

1

. An internal DM workload is

∑
=

K

m
nmdp

1

 and external DM workload is ∑ ∑
≠= =

D

nzz

N

i
nziddt

,1 1

. Therefore, the following constraints are

introduced (constraints on the number of tasks assigned to a DM, number of internal and external
coordinations):

E
D

nzz

N

i
nzi

I
K

m
nm

T
N

i
ni

Bddt

Bdp

Bdt

≤

≤

≤

∑ ∑

∑

∑

≠= =

=

=

,1 1

1

1

The maximal weighted coordination workload is ∑ ∑∑
≠= ==

=
⋅+⋅

D

nzz

N

i
nzi

E
K

m
nm

I ddtWdpW
,1 11

D1,..,n
 max .

Consequently, the constraints for maximal weighted coordination workload are

DnddtWdpWC
D

nzz

N

i
nzi

E
K

m
nm

I
W ,..,1,

,1 11

=∀⋅+⋅≥ ∑ ∑∑
≠= ==

The objective of Phase II is to minimize CW. This results in a binary linear programming problem:

{ }

∈

=⋅+⋅≥

=≤

=≤

=≤

===−+≥

===⋅≥

∑ ∑∑

∑ ∑

∑

∑

≠= ==

≠= =

=

=

1,0,,

 ,

 ,

 ,

 ,

; ;,..,1 ,1

;;,..,1 ,

 min

,1 11

,1 1

1

1

nzinmni

D

nzz

N

i
nzi

E
K

m
nm

I
W

E
D

nzz

N

i
nzi

I
K

m
nm

T
N

i
ni

mininmi

nmmini

W

ddtdpdt

D1,..,nddtWdpWC

D1,..,nBddt

D1,..,nBdp

D1,..,nBdt

N1,..,iD1,..,nKmdtdtddt

N1,..,iD1,..,nKmdpwdt

C

Note that the variables [dpnm] determine all the parameters (other variables and all the constraints)
in the problem. This kind of problem structure makes it easier to apply optimal algorithms. Again,
as in section 3.1.2, optimal algorithms such as dynamic programming and decomposition
algorithms can be used to find the optimal solution.

3.2.2 Sub-optimal Algorithm: Hierarchical Clustering

Assume that two DMs (n and m) are assigned the platform sets },...,{ 1 Unn and },...,{ 1 Vmm

respectively with the corresponding internal workloads U and V. We define the assignment
signature vector for each such DM (group of platforms):

[]nNnnn IIqQ ,...,, 1=

where qn = number of platforms in the group (assigned to DM), Ini = 1 if DM n is assigned task i.

Here, variables Ini are determined as in
DMn

ni wI max
∈

= . Then, U=qn, V=qm and external

communication between DMs n and m is ()∑
=

N

i
mini II

1

,max .

Suppose that two platform groups },...,{ 11 UnnC = and },...,{ 12 VmmC = are to be combined into

a new cluster at the next step of the algorithm. This would produce a decrease in external
coordination for other DMs (because the coordination with one of them is eliminated). The
decrease would be the most if vectors []nNn II ,...,1 and []mNm II ,...,1 were the same and equal to

[1,…,1].

Clearly, we would want to combine the groups which are “close” under these conditions (carry
close assignment signatures). Note that if these vectors have all distinct entries, then other DMs’
external workloads would not decrease after these two groups are joined together. The
“closeness” is defined as the number of 1’s in the same places in the signature vectors []nNn II ,...,1

and []mNm II ,...,1 . Also, when two groups are combined, the number of platforms (that is, internal

workload) in the new group is the sum of the two old group sizes. We want to obtain a tradeoff
between maximizing the “closeness” between the groups and minimizing the new group size. It is
done by minimizing a weighted function using weights for internal and external coordination. The
distance between two clusters },...,{ 1 Unn and },...,{ 1 Vmm is then defined as

(∗)

() [] []()

() { }∑
=

−+=

==
N

i
mini

E
mn

I

mNmmnNnn

IIWqqW

IIqIIqdCCd

1

1121

,min

,...,,,,...,,,

The method of combining clusters in this way is called hierarchal clustering. The algorithm is as
follows.

Step 1. Begin by assigning each platform to a distinct cluster. Define assignment signature vector for each cluster
m=1,..,K as []Nmmm wwQ ,...,,1 1= (where wim are platform-task assignment variables obtained in phase I).

Define the distance between any two clusters as in (∗).

Step 2. Choose two clusters with minimum distance between them and combine them into a single cluster. Update
the signature vectors and the distance matrix. If two clusters with signature vectors []nNnnn IIqQ ,...,, 1= and

[]mNmmm IIqQ ,...,, 1= are to be joined together, the new cluster with the following signature is obtained:

() ()[]mNnNmnmn IIIIqqQ ,max,...,,max, 11+= .

Step 3. If the number of clusters is equal to D (numbers of available DMs), the algorithm terminates.

Example (continued).

Given the results obtained in the scheduling phase, platforms are hierarchally clustered into D=5
clusters to be assigned to 5 available DMs. For internal and external coordination workload
weights WI=1 and WE=2, the resulting coordination network is shown in figure 12. For workload
weights WI=3 and WE=2, the resulting coordination network is a tree shown in Figure 13. DM-
platform assignment and cluster signature vectors for these two examples are shown in Figure 14.

DM2

P4 P17P19P20

DM3

P5 P11P12P18

DM4

P6 P8 P10P15

DM1

P1 P2 P3 P16

DM5

P7 P9 P13P14

T14

T1 T2

T17

T5 T8 T16

T6

T7

T6

T6

- DMs

- platforms assigned to DMs

- tasks communication is conducted over

- communication edge

Figure 12. DM-platform allocation and Required Coordination for WI=1, WE=2

- DMs

- platforms assigned to DMs

- tasks communication is conducted over

- communication edge
DM2

P3 P5 P11P12

DM3

P4 P17P19P20

DM4

P6 P8

DM1

P1 P2 P9 P10

DM5

P7 P14

T2

T7 T6P15P16

P13P18

P20
T8

T5

Figure 13. DM-platform allocation and Required Coordination for WI=3, WE=2

PlatformsClusters Signature vector

19 204 17

12 185 11

10 156 8

3 161 2C1

C2

C3

C4

13 147 9C5 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 04 0 0

0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 04 1 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 14 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 04 0 0

0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 04 1 1

PlatformsClusters Signature vector

19 204 17

6 8

C1

C2

C3

C4

7 14C5 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 02 0 0

0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 06 1 1

0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 06 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 1

9 101 2 15 16

11 123 5 13 18

WI=1, WE=2:

WI=3, WE=2:

Figure 14. Platform clusters and their signature vectors

3.3 Organizational Hierarchy

In phase II, allocation of DMs to resources (platforms) is obtained. An external DM-DM
coordination is determined based on joint task processing. DMs with their inter-DM coordination
represent a network, where nodes are the DMs and edges denote coordination induced by joint
task processing. Edge weights are equal to the required amount of coordination.

Hierarchical organizations eliminate decision-making confusion by imposing superior-subordinate
(supported-supporting) relations. This means that organizations represent a layered structure
where DMs from the lower level have exactly one link to the preceding level. The hierarchy
consists of links through which it is permitted to communicate inside the hierarchy. These links
form a tree in the network of DM nodes. The goal is to match the organizational hierarchy to the
coordination network that is necessary for completing the mission. Different definitions of
matching create different formulations of the hierarchy construction problem. When the necessary
communication link between two DMs is not in the hierarchy, the information required for their
coordination is passed through nodes on the path between them in the hierarchy. Such a path is
unique for tree-structured systems. The communication value between these DMs is then added to
each DM on the path between them as an additional workload. It is called indirect coordination.
The external coordination workload is then the sum of direct (one-to-one) and indirect (through
an intermediary) coordination. Evidently, this workload should be minimized in some sense. Here
we present two problem formulations based on two main definitions of minimization:
minimization of the maximal DM external coordination workload and minimization of the overall
indirect (additional) coordination induced by the hierarchy.

3.3.1 Min-Max Problem Formulation

When the objective is to minimize the maximal external coordination workload, we impose
additional constraints on the information flow. We restrict the indirect communication to go
through only one intermediate DM. Information can be distorted while in transit, and additional
intermediate nodes on the information path would increase the decision delay. Hence it is justified
to consider restrictions, such as a single intermediate DM, to make organizations more
responsive.

In the problem formulation, we introduce the dummy node 0 that would serve as a single-link root
node. After the optimization is done, it is deleted from the tree while maintaining the tree
structure.

The following variables are used to formulate the problem:

=
otherwise 0,

hierarchy in the and between link direct a is thereif ,1 ji
xij

=
otherwise 0,

 through connected are and if ,1 kji
zijk

WMAX = maximal DM hierarchy workload

The fact that we would use “direct” links accounts for the need to structure the hierarchy level by
level. Then, direct links exist only from the higher level to the next lower level. In fact, the level
structure of the hierarchy would be changed afterwards to place the DM with the smallest
workload at the root of the tree.

The following parameters are used (with the outputs of phase II):

cmn = required coordination between DMs n and m given by ∑
=

=
N

i
mnimn ddtc

1

.

dmn = 1 if DMs n and m must communicate given by
mni

Ni
mn ddtdd max

,..,1=
=

en =external workload (direct) given by ∑
≠

=
nm

nmn ce

in=internal workload of a DM n given by ∑
=

=
K

m
nmn dpi

1

The number of edges in the tree is equal to the numbers of nodes minus 1. Because of the fact that
we have a dummy root-node, the number of nodes in our graph is D+1. The deletion of the
dummy node should not disconnect the network. Since the structure on the nodes 1,..,D should
also be a tree, the following additional constraint is introduced:

1
1,

−=∑
=

Dx
D

ji
ij

As mentioned earlier, a node at any level (except for the root) has a single connection to a node in
the previous level. This means that there is only one link into each non-root node (for each i there
exists only one j such that xji=1). Root node does not have any in-links. Therefore, the following
constraints on the number of “in-edges” are introduced:

Dixx
D

j
ji

D

j
j ,..,1,1,0

00
0 === ∑∑

==

If node i is at level l and there is a directed edge from i to j (that is, xij=1), then node j is at level
l+1. Therefore, the following constraints are imposed:

()() DjiDxll ijij ,..,0, ,111 =+−++≥ (note that l0 = 0)

Clearly, when xij=1, 1+≥ ij ll . Otherwise, Dll ij −≥ , which is always true (number of levels

cannot be more than the number of edges, hence the right-hand side is <0). These constraints are
also “non-cycling” implying that they impose a tree-structure on the organization.

If DMs i and j must coordinate, they either are connected directly, or through some other DM k.
This connection is unique. Therefore, we obtain the following constraints:

Djiddzx ij

D

k
ijkij ,..,1, ,

1

=≥+ ∑
=

Whenever zijk=1, then there are links between i and k and between j and k (in some direction). We
have an edge between nodes i and k if and only if 1=+ kiik xx . Since level-constraints prohibit

having more than two edges (in different directions) between any two nodes, we have the
following relation between variables xij and zijk:

Dkjizxxxx ijkkjjkkiik ,..,1,, ,2 =≥+++

The total external workload is found adding indirect external workload to the direct external
coordination workload of phase II. Therefore,

DncziW
ji

ijijnnMAX ,..,1 ,en =++≥ ∑
<

The objective is to minimize WMAX. Combining all constraints, our problem is a linear binary
programming problem of the following form:

()()

{ }

∈

=++≥

=≥+++

=≥+

=+−++≥

===

−=

∑

∑

∑∑

∑

<

=

==

=

1,0,

,..,1 ,e

,..,1,, ,2

,..,1, ,

,..,0, ,111

,..,1,1,0

1

 min

n

1

00
0

1,

ijkij

ji
ijijknMAX

ijkkjjkkiik

ij

D

k
ijkij

ijij

D

j
ji

D

j
j

D

ji
ij

MAX

zx

DncziW

Dkjizxxxx

Djiddzx

DjiDxll

Dixx

Dx

W

When the solution to this problem is found, the “dummy” root node is discarded. Then the node

with the smallest workload is found (workload of DM n being calculated as ∑
<

++
ji

ijijnnn czei)

and selected to be at the root of the organizational hierarchy. Other choices lead to different
organizational structures. The levels are then updated accordingly.

3.3.2 Optimal Coordination Tree

In this section, we present the optimal algorithm due to [Hu 82]. The objective is one of
minimizing the additional coordination (indirect) introduced by the hierarchy. When two DMs i
and j coordinate (their coordination equal to cij) and an edge (a communication link) between i
and j exists in the hierarchy tree, coordination is direct and is added to each of the coordinating
DMs. The overall coordination in this case would be 2⋅cij. When there is no direct link,
coordination (indirect) is also added to all the DMs on the path between them (there will be #
edges-1 nodes on this path). Therefore, overall coordination is

cij⋅(# of edges between i and j in the hierarchy tree +1)

Hence, the overall external coordination for any hierarchy tree T is

() ()∑ ∑
= +=

+⋅=
D

i

D

ij
ij TjicTCOM

1 1

1 treein the and between edges of #

A tree T that minimizes the function COM(T) is called Gomory-Hu tree (also called optimal
coordination tree). The following algorithm computes the Gomory-Hu tree (from [Hu 82]).

The following definitions are used:

original network – a graph of nodes (DMs) with edge weights cij (coordination between DMs i and j).
residual network – a network derived from the original network and current tree T and processed under the
algorithmic steps; used in changing tree T.
clique – a set of one or more nodes of the original network; a node of the tree T.
condensing: a set of nodes is said to be condensed if it is combined into a single node called aggregated
node. A weight of the edge between this new aggregated node and any other node n in the network is
equal to the sum of edge weights in the original network between n and all nodes in this aggregated node;
when two cliques are condensed, it is equivalent to condensing the set of original network nodes which
constitute these cliques. That is, if two cliques G1={i1,…,ik} and G2={j1,…,jm} are to be condensed, the
new node is G={i1,…,ik,j1,…,jm} and for any node n from the original network, the edge in the residual
network is

∑∑
==

+=
m

u
nj

k

v
ni

new
nG uv

ccc
11

The new node is also a clique. The edge in the residual network between two cliques G1 and G2 is

∑∑
= =

=
k

v

m

u
jiGG uv

cc
1 1

21

expanding: a clique is expanded when all the nodes of the original network it consists of enter the
residual graph as independent nodes.
minimum cut: in the network, minimum cut between two nodes n and m is defined as two sets ()XX ,

such that XmXn ∈∈ , and the amount of flow between these sets, that is ∑
∈∈ XjXi

ijc
,

, is minimal.

The algorithm for finding the optimal coordination tree is as follows.

Initialization. Start with |T|=1, a tree T containing a single clique which consists of all nodes of the original
network from Phase II.

Step 1. Select a clique G in T which consists of more than one node of the original network. Disconnect this
clique in T (remove all edges incident to this clique in T). It breaks T into several connected components.

Step 2. Create a residual network by condensing each connected component into one clique (node) and expanding
selected clique.

Step 3. Pick any two nodes i and j (original nodes) from the selected clique and find minimum cut ()XX , in the

residual network, XjXi ∈∈ , .

Note: X (and X) consist of condensed cliques of T and of nodes of the original network (from clique G).

Step 4. Create two new cliques G1, G2 in the tree T replacing selected clique with them:
{ } { }XjGjGXiGiG ∈∈=∈∈= 21 , .

Note that
21 GGG ∪= . The following edges are created in T between these new cliques and other (old)

cliques of T:
For each clique N∈T connected to G in T:

a) if N∈X, then an edge between N and G1 is created;
b) if N∈ X , then an edge between N and G2 is created;

The edges are updated as described.

Step 5. If all cliques of T contain only single nodes of the original network, STOP.

Graphically, the algorithm is represented in Figure 15.

Select a Clique consisting of
multiple nodes in T
Remove it from T

Create Residual Network
by cliques expansion-compression

Find Min Cut in Residual Network

Update T

OK

NO
Root Selection

End

Figure 15. Optimal Coordination Tree Algorithm.

The complexity of the algorithm is polynomial in the number of nodes of the original network
(number of DMs). In step 3, a min-cut algorithm (min cut=max flow) is used. Algorithms for min-
cut problems include Ford-Fulkerson Algorithm (which can be exponential in the worst case but
performs good in practice), DMKM, and other more sophisticated algorithms with polynomial
complexity (see [Bertsekas, 1998]). When the tree is found, the node with the smallest overall
workload is placed at the root of this tree.

Example (continued).

The network constructed from the coordination data obtained using workload parameters WI=1,
WE=2 is given in Figure 16.

The step-by-step hierarchy structuring process is shown in the Figure 17. In the final step, the
node with minimal workload is chosen to be at the root of the tree. The resulting organizational
structure is shown in Figure 18. (Other choices will result in different organizational structures.)

Choosing the node with smallest weighted workload to be placed at the root of the tree is only
one of the ways to structure the organization. Note that workload parameters WI=3, WE=2
produce tree-structured coordination network. Choosing the node with smallest workload to be a
root results in a hierarchy depicted in Figure 18. On the other hand, choosing DM 3 would result
in a hierarchy which can be viewed as more “responsive” because the commander (the root node)
has closer access to other DMs. Selecting DM 2 to be a root results in an even better hierarchy
with commander having direct access to all but one DM (Figure 21).

2

3

4

1

5

1 1

1

1 1

2

1

3

Figure 16. DM-coordination network, WI=1, WE=2

1 3 4 5 2
2

3 4 5 2
2

1
5

2
2

1
5

4

4

3

5

5

3 51
5

4

4

2
2

- clique

- node

- information flow

Figure 17. Hierarchy Construction

DM2

P4 P17P19P20

DM3

P5 P11P12P18

DM4

P6 P8 P10P15

DM1

P1 P2 P3 P16

DM5

P7 P9 P13P14

EW=2
EWold=2

EW =11
EW old=6

EW =5
EW old=5

EW =4
EW old=4

EW =5
EW old=5

EW – new external workload
EW old – old ext. workload

Figure 18. Organizational hierarchy for minimizing additional communication

EW =1
EW old=1

EW =5
EW old=5

EW =3
EW old=3

EW =1
EW old=1

EW =2
EW old=2

DM3

P4 P17P19P20

P20

DM2

P3 P5 P11P12

P13P18

DM5

P7 P14

DM1

P1 P2 P9 P10

P15P16

DM4

P6 P8

Figure 19. Organizational hierarchy for WI=3, WE=2 with “min-root”.

EW =1
EW old=1

EW =5
EW old=5

EW =3
EW old=3

EW =1
EW old=1

EW =2
EW old=2

DM3

P4 P17P19P20

P20

DM2

P3 P5 P11P12

P13P18

DM5

P7 P14

DM1

P1 P2 P9 P10

P15P16

DM4

P6 P8

Figure 20. Organizational hierarchy for WI=3, WE=2 (with DM 3 as the root node).

DM3

P4 P17P19P20

DM4

P6 P8

DM5

P7 P14

DM1

P1 P2 P9 P10

P15P16

DM2

P3 P5 P11P12

P13P18

P20

EW =5
EW old=5

EW =1
EW old=1

EW =2
EW old=2

EW =1
EW old=1

EW E=3
EW old=3

Figure 21. Organizational hierarchy for WI=3, WE=2 (with DM 2 as the root node).

3.3.3 Maximal Spanning Tree Algorithm

An alternative is to use maximal spanning tree algorithm to construct the organizational hierarchy
tree. We obtain the tree T that maximizes

() ()
∑
∈ TEji

ijc
,

, where E(T) denotes the set of edges of the

tree T. This can be done by applying the minimum spanning tree algorithm. Note that the
maximum spanning tree problem with edge weights cij transforms into a minimum spanning tree
problem with edge weights aij=cmax-cij, where cmax=max{cij}. Methods for finding the minimal
spanning tree include Kruskal, Jarnik-Prim-Dijkstra, and Bor’uvka (see [Bertsekas,98], [Hu,82]).

The algorithm is as follows:

Step 1. Select an edge with maximum coordination such that doesn’t create cycles in the network.

Step 2. If ties occur, select the coordination link connected to the DM with minimal workload.

Step 3. When number of edges in the tree is equal to D (# of DM nodes), STOP.

The idea behind the algorithm is that we try to include the largest coordination links and to make
DMs with largest workload to be at the lowest level of the hierarchy tree.

Example 1 (continued).

Constraining the depth of command to be at most 2, for the workload weights WI=1, WE=2, we
obtain the tree shown in Figure 22.

4. Summary and Future Research

In this paper, we have presented the formulations and algorithms for three distinct phases of our
organizational design process. Strict mathematical problem formulations provide the foundation

DM2

P4 P17P19P20

DM3

P5 P11P12P18

DM4

P6 P8 P10P15

DM1

P1 P2 P3 P16

DM5

P7 P9 P13P14

EW =6
EW old=2

EW =8
EW old=6

EW =7
EW old=5

EW =4
EW old=4

EW =5
EW old=5

Figure 22. Organizational hierarchy for WI=3, WE=2 using maximal spanning tree.

for exploring ways to solve these problems with a required degree of optimality and choosing the
specific algorithmic approaches according to available computational resources. Discussed
problems are NP-hard, but their formulations allow one to introduce near-optimal polynomial
algorithms.

Linear mixed-binary programming formulations allow one to construct approximation algorithms
such as Lagrangian relaxation technique (creating a new problem by relaxing the constraints
which are difficult to handle; for example, the resources constraints and precedence constraints in
the scheduling problem formulation) and decomposition algorithms (decoupling the problem and
solving simplified sub-problems, thereby reducing the size and computational complexity).
Formulations of different Lagrangian relaxations and decompositions for scheduling, clustering
and structural optimization phases of organizational design can be found in [Levchuk et al.,
2000]. These methods, together with mechanisms for adaptation, form the basis for our
continuing research in this area.

Our current efforts are focuses on conducting a comparative analysis of various optimization
algorithms in solving specific design problems and defining criteria for classifying multi-objective
optimization problems into groups that require particular optimization sequence. This would
allow us to reduce solution complexity for large-scale organizational design problems.
Quantifying a set of user-defined performance measures provides the criteria for evaluating an
organizational design. The above measures are aggregated to define an objective function for the
design procedure. They also define measures of organizational robustness (i.e., the ability of an
organization to maintain the required level of performance despite variations in its task
environment) and of adaptability (i.e., the ability of an organization to adapt to environmental
changes and functional failures). Developing fast algorithms for real-time analysis of feasible
adaptation options, suggesting suitable forms of adaptation and appropriate transition sequence
for reconfiguration would provide a computational framework for on-line adaptation in C2
systems.

5. References

[Baruah, 1998] S.K. Baruah. The Multiprocessor Scheduling of Precedence-constrained Task Systems in the
Presence of Interprocessor Communication Delays. Operations Research, Vol. 46, No. 1, January-February, 1998,
65-72

[Barnhart et al., 1998] C. Bernhart et al. Branch and Price: Column Generation for Solving Huge Integer
programs. Operations Research, Vol. 46, No. 3, May-June 1998, 316-329

[Bertsekas, 1998] D.P. Bertsekas. Network Optimization: Continuous and Discrete Models. 1998

[Bertsekas, 1997] D.P. Bertsekas and J.N. Tsitsklis. Introduction to Linear Optimization. 1997

[D. Bertsekas et al., 1992] D. Bertsekas et al. Data Networks. 1992

[Burns et al., 1993] W.J. Burns and R.T. Clemen. Covariance structure models and influence diagrams. Manag.
Sci,, vol. 39, 1993, 816-833

[Chan et al., 1998] L.M.A. Chan et al. Parallel Machine Scheduling, Linear Programming, and Parameter List
Scheduling Heuristics. Operations Research, Vol. 46, No. 5, Sept-Oct 1998, 729-741

[Carley et al., 1995] K.M. Carley and Z. Lin. Organizational Design Suited to High Performance Under Stress.
IEEE Transactions SMC, Vol. 25, 1995, 221-231

[Cheng et al., 1990] T.C.E. Cheng and C.C.S. Sin. A State-of-the-art Review of Parallel-Machine Scheduling
Research. European Journal of Operational Research, 47, 1990, 271-292

[Cheng et al., 1994] T.C.E. Cheng and Z.-L. Chen. Parallel-Machine Scheduling Problems with Earliness and
Tardiness Penalties. Journal of Operations Research Society, Vol. 45, No. 6, 1994, 685-695

[Current et al., 1994] J. Current et al. Efficient Algorithms for Solving the Shortest Covering Path Problem.
Transportation Science, Vol. 28, No. 4, November 1994, 317-325

[Curry et al., 1997] M.L. Curry, K.R. Pattipati, and D.L. Kleinman. Mission Modeling as a Driver for the Design
and Analysis of Organizations. Proceedings of 1997 Command and Control Research and Technology Symposium,
Monterey, CA, June 1997

[Diday et al., 1987] E. Diday et al. Recent Developments in Clustering and Data Analysis. Proceeding of the
Japanese-French Scientific Seminar. March, 1987

[Dumas et al., 1995] Y. Dumas et al. An Optimal Algorithm for the Traveling Salesman Problem with Time
Windows. Operations Research, Vol. 43, No. 2, March-April 1995, 367-371

[El-Rewini et al., 1994] H. El-Rewini et al. Task Scheduling in Parallel and Distributed Systems. 1994

[Franca, 1995] P.M. Franca. The m-Traveling Salesman Problem with Minmax Objective. Transportation Science,
Vol. 29, No. 3, August 1995, 267-275

[Fischetti et al., 1997] M. Fischetti et al. A Branch-and-cut Algorithm for the Symmetric Generalized Traveling
Salesman Problem. Operations Research, Vol. 45, No. 3, May-June 1997, 378-394

[Fisher et al., 1997] M.L. Fisher et al. Vehicle Routing with Time windows: Two Optimization Algorithms.
Operations Research, Vol. 45, No. 3, May-June 1997, 488-492

[Fisher, 1994] M.L. Fisher. Optimal solution of Vehicle Routing Problems using minimum K-trees. Operations
Research, Vol. 42, No. 4, July-August, 1994, 626-642

[Graham et al., 1986] D. Graham and H.L.W. Nuttle. A Comparison of Heuristics for a School Bus Scheduling
Problem. Transportation Research, Part B, Vol. 20, No. 2, 1986, 175-182

[Golden et al., 1988] B.L. Golden and A.A. Assad. Vehicle Routing: Methods and Studies. 1988

[Hoffman et al., 1993] K.L. Hoffman and M Padberg. Solving Airline Crew Scheduling Problems by Branch-and
Cut. Management Science, Vol. 39, No. 6, June 1993, 657-682

[Hu, 1982] T.C. Hu. Combinatorial Algorithms. 1982

[Jain, Dubes, 1988] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. 1988

[Kempel, 1996] W.G. Kempel, D.L. Kleinman and M.C. Berigan. A2C2 Experiment: Adaptation of the Joint
Scenario and Formalization. Proc. 1996 Command and Control Research and Technology Symposium, Monterey,
CA, 1996.

[Kempel, 1996] W.G. Kempel, S.G. Hutchins, D.L. Kleinman, K. Sengupta, M.C. Berigan and N.A. Smith. Early
Experiences with Experimentation on Dynamic Organizational Structures. Proc. 1996 Command and Control
Research and Technology120 Symposium, Monterey, CA, 1996.

[Kempel, 1997] W.G. Kempel, J. Drake, D.L. Kleinman, E.E. Entin, and D. Serfaty. Experimental Evaluation of
Alternative and Adaptive Architectures in Command and Control. Proceedings of the 1997 Command and Control
Research and Technology Symposium, Washington, DC, June 1997.

[Kleinman et al., 1996] D.L. Kleinman, P. Young, and G.S. Higgins. The DDD-III: A Tool For Empirical
research in Adaptive Organizations. Proceedings of the 1996 Command and Control Research and Technology
Symposium, Monterey, CA, June 1996.

[Lawler, 1976] E.L. Lawler. Combinatorial Optimization: Network and Matroids. 1976

[Lawler et al, 1985] E.L. Lawler et al. The Traveling Salesman Problem. 1985

[Levchuk et al., 1996] Y.N. Levchuk et al. Design of Congruent Organizational Structures: Theory and
Algorithms. Proceedings of 1996 Command and Control Research and Technology Symposium, Monterey, CA,
June 1996

[Levchuk et al., 1997] Y.N. Levchuk et al. Normative Design of Organizations to Solve a Complex mission:
Theory and Algorithms. Proceedings of the 1997 Command and Control Research and Technology Symposium,
Washington, DC, June 1997

[Levchuk et al., 1998] Y.N. Levchuk, K.R. Pattipati , and D.L. Kleinman. Designing Adaptive Organizations to
Process a Complex Mission: Algorithms and Applications. Proceedings of the 1998 Command & Control Research
& Technology Symposium, NPS, Monterey, CA, June 1998.

[Levchuk et al., 1999a] Y. Levchuck, K.R. Pattipati and D.L. Kleinman. Analytic Model Driven Organizational
Design and Experimentation in Adaptve Command and Control. Systems Engineering, Vol. 2, No. 2 , 1999.

[Levchuk et al., 1999b] Y.N. Levchuk, Jie Luo, Georgiy M. Levchuk, K.R. Pattipati, and D.L. Kleinman. A Multi-
Functional Software Environment for Modeling Complex Missions and Devising Adaptive Organizations.
Proceedings of the 1999 Command & Control Research & Technology Symposium, NPS, Newport, RI, June 1999.

[Levchuk et al., 2000] G.M. Levchuk, Y.N. Levchuk, Jie Luo, Fang Tu, and K.R. Pattipati. A Library of
Optimization Algorithms for Organizational Design. Dept. of ECE, Univ. of Connecticut, Cyberlab TR-00-102,
Storrs, CT 06269-2157.

[Luenberger, 1984] D.G. Luenberger. Linear and Nonlinear Programming. 1984

[Madsen et al., 1995] O.B.G. Madsen et al. A Heuristic Algorithm for a Dial-a-ride Problem with Time
Windows, Multiple Capacities, and Multiple Objectives. Annals of Operations Research, 60, 1995, 1993-208

[Malandraki et al., 1992] C. Malandraki and M.S. Daskin. Time Dependent Vehicle Routing Problems:
Formulations, Properties, and Heuristic Algorithms. Transportation Science, Vol. 26, No. 3, August 1992, 185-
199

[Martello, Toth, 1990] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
1990

[Mingozzi et al., 1997] A. Mingozzi et al. Dynamic Programming Strategies for the Traveling Salesman
Problem with time window and Precedence Constraints. Operations Research, Vol. 45, No. 3, May-June 1997,
365-377

[Nemhauser et al., 1988] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. 1988

[Papastavrou, 1992] J.D. Papastavrou and M. Athans. On Optimal Distributed Detection Architectures in a
Hypothesis Testing Environment. IEEE Transactions on Automatic Control, Volume 37, 1992, 1154-1169.

[Perdu, Levis, 1997] D.M. Perdu and A.H. Levis. A methodology for Adaptive Command and Control Teams
Design and Evaluation. Proceedings of the 1997 Command and Control Research and Technology Symposium,
Washington, DC, June 1997.

[Pete et al., 1994] A. Pete, D.L. Kleinman, and K.R. Pattipati. Structural congruence of tasks and organizations.
Proceedings of the 1994 Symp. on Command and Control Research and Decision Aids, NPS, Monterey, CA, 1994,
168-175

[Pete et al., 1995] A. Pete, D.L. Kleinman, and K.R. Pattipati. Designing organizations with congruent
structures. Proceedings of the 1995 Symposium on Command and Control Research and Technology, Washington,
DC, 1995

[Pete et al., 1996] A. Pete, K.R. Pattipati, and D.L. Kleinman. Optimization of decision networks in structured
task environments IEEE Trans. Syst., Man, Cybern., Nov. 1996.

[Pete et al., 1995] A. Pete, D.L. Kleinman, and P.W. Young. Organizational performance of human teams in a
structured task environment Proceedings of the 1995 Symposium on Command and Control Research and
Technology, Washington, DC, 1995.

[Pete et al., 1998] A. Pete, K.R. Pattipati, D.L. Kleinman, and Y.N. Levchuk. An Overview of Decision Networks
and Organizations. IEEE Trans. Syst., Man, Cybern. May. 1998, pp. 172-192.

[Pinedo, 1995] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. 1995

[Reibman et al., 1987] A. Reibman and L.W. Nolte. Design and performance comparison of distributed
detection networks. IEEE Trans. Aerosp. and Electr. Syst., vol. 23, November, 1987, 789-79

[Shachter, 1986] R.D Shachter. Evaluating influence diagrams. Oper. Res., vol. 34, 1986, 871-882

[Shirazi et al., 1990] B. Shirazi et al. Analysis and evaluation of Heuristic methods for static task scheduling. J.
of parallel and distributed computing 10, 1990, 222-232

[Shlapak et al., 2000] Yurij Shlapak, Jie Luo, Georgiy M. Levchuk, Fang Tu, and Krishna R. Pattipati. A Software
Environment for the Design of Organizational Structures. Proceedings of the 2000 Command & Control Research
& Technology Symposium, NPS, Monterey, CA, June 2000.

[Tang et al., 1993] Z.B. Tang, K.R. Pattipati, and D.L. Kleinman. Optimization of Distributed Detection
Networks: Part II. Generalized Tree Structures. IEEE Transactions on Systems, Man and Cybernetics , vol. 23,
1993, 211-221.

[Turek et al., 1992] J. Turek, J. Wolf, K. Pattipati, and P. Yu. Scheduling Parallelizable Tasks: Putting it all on
the Shelf. 1992 ACM Sigmetrics Conference, Newport, R.I., June1-5, 1992.

[Selvakumar et al., 1994] S. Selvakumar and C.S.R. Murthy. Scheduling Precedence Constrained Task Graphs
with Non-Negligible Intertask Communication onto Multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, Vol. 5, No. 3, March 1994, 328-336

[Solomon, 1987] M.M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window
Constraints. Operations Research, Vol. 35, No. 2, March-April 1987, 254-265

[Taillard et al., 1997] E. Taillard et al. A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time
Windows. Transportation Science, Vol. 31, No. 2, May 1997, 170-186

[Van de Velde, 1993] S.L. Van de Velde. Duality-Based Algorithms for Scheduling Unrelated Parallel Machines.
ORSA Journal on Computing, Vol. 5, No. 2, Spring 1993, 182-203

[Wolsey, 1998] L.A. Wolsey. Integer Programming. 1998

[Fang, 1993] S. Fang and S. Puthenpura. Linear Optimization and Extensions. Theory and Algorithms. 1993

[Wright, 1998] P.L. Wright and N.J. Asgford. Transportation Engineering: Planning and Design. 1998

[Xu, 1993] J. Xu. Multiprocessor Scheduling of Processes with Release Times, Deadlines, Precedence, and
Exclusion Relations. IEEE Transactions on Software Engineering, Vol. 19, No. 2, Feb 1993, 139-154

[Ying et al., 1997] Ying Jie, Y.N. Levchuk, M.L. Curry, K.R. Pattipati, and D. L. Kleinman. Multi-Functional
Flow Graphs: A New Approach to Mission Monitoring. Proceedings of the 1997 Command and Control Research
and Technology Symposium, Washington, DC, June 1997.

[Zweig, 1995] G. Zweig. An Effective Tour Construction and Improvement Procedure for Traveling Salesman
Problem. Operations Research, Vol. 43, No. 6, November-December 1995, 1049-1057

